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Critical behaviour of an m-vector spin glass for m = 00 

J E Green?, A J Bray and M A Moore 
Department of Theoretical Physics, The University, Manchester, M13 9PL, UK 

Received 21 December 1981, in final form 4 March 1982 

Abstract. A special case of the spin glass model is considered in which the number of 
spin components m becomes infinitely large. We derive a field theory Hamiltonian for 
this model and show that its upper critical dimensionality is eight. The critical exponents 
for this theory are calculated in an expansion in E = 8 - d  to second order. We notice 
that this second-order expansion is identical to that for the p + 03 limit of the Q3 model 
in E = 6 - d .  

1. Introduction 

There has recently been interest in systems whose effective upper critical dimensional- 
ity (UCD) is eight and their relation to theories with an upper critical dimension of 
six. The two previous examples are the lattice animal problem (Lubensky and Isaacson 
1979) and the field theory model of Anderson localisation proposed by Harris and 
Lubensky (1981). These two models have been shown to be equivalent to one another 
(Lubensky and McKane 1981) and to the Yang-Lee edge singularity near six 
dimensions (Parisi and Sourlas 1981). In this paper we consider the usual model of 
a spin glass with Hamiltonian 

where Si, is a Cartesian component of an m-component spin at site i of a hypercubic 
lattice and Jii is a random coupling between nearest neighbour spins, in the limit when 
the number of components m tends to infinity. Surprisingly it turns out that the UCD 
of the large-m limit is eight and not six as it is for any finite m. This curious result 
is the subject of this paper. 

In the rest of this section we will show how the field theory Hamiltonian is derived 
in the large-m limit. In 3 2 we see why the UCD is eight and also calculate the 
exponents for the theory to second order in E = 8 - d .  In 3 3 we notice that these 
exponents are the same as the p = 00 limit of those in an expansion about six dimensions 
for the Q3 tensor field theory described by Priest and Lubensky (1976). In this theory 
Q is a p-dimensional traceless symmetric tensor and we consider the case in which 
the coupling constant is imaginary. One might therefore hope to prove similar 
identities to those between the lattice animal and Yang-Lee edge singularity theories. 

t Formerly J E Kirkham. 
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We return to the Hamiltonian (1.1) and consider the partition function of the 
system replicated n times 

= Tr, exp(-pH'"') (1.3) 
where each replica is labelled by 7 and 7 runs from 1 to n. Tr, denotes a trace over 
all spin variables. We define the average over all possible configurations of the coupling 
Jii by 

(Z") ,  = d[J] P[J] Tr, exp(-pH'"') (1.4) 

where P[J] is the probability distribution function for J, If we define the effective 
Hamiltonian for the theory by 

(Z") ,  = Tr, exp(-&("') (1.5) 

then we can write down 6'") formally by integrating (1.4) over J to give 
k 

k = l  i.j 

where C'k' is the kth cumulant of the distribution P[J]. For the spin glass case C"' = 0 
and if we further take P[J] to be a gaussian distribution then C'k' = 0, k > 2. Hence 
we have only one term remaining in I?-("' and 

where Kij = 1 if i, j are nearest neighbour sites and zero otherwise. 
The application of the Hubbard-Stratonovich transformation (Hubbard 1972) gives 

(1.9) 

We expand In zi to 3rd order in the Q fields, since in the region of interest near eight 
dimensions these terms dominate over those of higher order. If we choose the length 
of our spin to be m, i.e. 

(s:s;) = s a b  a", (1.10) 

then we can show that the expansion of In z to the third order in Q can be written 

(1.11) 
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where we have separated our Q field into the diagonal part Q:: = Tzb and the 
off-diagonal part Q:[ = Q:[ if 7 # Y and also taken the continuum limit (i.e. Z i A i  + 

ddxA(x)). This analysis is similar to that of Harris et a1 (1976) and Chen and 
Lubensky (1977) except that we have calculated the m dependence explicitly and 
retained the diagonal terms. T 5  is a traceless symmetric tensor which we call the 
quadrupole field, and the off-diagonal field of equation (1.11) is the spin glass 
field of Harris et al (1976). There is another contribution to the effective Hamiltonian 
from the p-2 X ( K - l ) i i Q Z Q ~  term in equation (1.8). To evaluate this we make a 
Fourier transformation into momentum space and then expand the resulting K ( 4 )  as 
a power series in q. If we then invert the transformation in terms of a continuous 
space variable x we have to lowest order in the derivatives 

where 7 is a constant which depends on the normalisation choice for the gaussian 
distribution. Thus, adding (1.11) and (1.121, the coefficient of (T:b)2 is F / l p 2 +  
m/(m +2)  and the coefficient of is i /p ’+  1, so the two fields have a difference 
in mass of order l /m.  It is this difference in mass which in the m limit shifts the 
UCD from the six we would expect for a trilinear theory with finite m to eight. When 
m is very large but still finite, we expect that there will be a crossover at some 
temperature near the critical temperature from the infinite-m behaviour to the 
finite-m behaviour. This mechanism for boosting the UCD does not seem to have 
been encountered previously. The continuum field theory is now obtained by adding 
(1.11) and (1.12) and scaling the fields so that the coefficient of (VQ2b”)’ is f; the result 
is 

H =  ddX a [(VQ:b”)2+r(Q:b”)21+a [ (VT,“b)2+(r+7/m)(T:: ) )2]  ( a,b a, b 
‘1. ‘1 

(1.13) 

where w, r and r + r / m  are the coefficients of Q3, Q2 and T2 which arise after we 
have rescaled the fields. 

2. E expansion 

In this section we describe how the critical exponents were calculated in an E expansion. 
We begin by expanding the coefficients of the trilinear terms in the Hamiltonian as 
a series in l l m .  In the large-m limit it turns out that we can neglect all except the 
zeroth-order term and our Hamiltonian density becomes 

2Y = a[(VQ)’ + rQ’] + s[(VT)2 + (r + ./m) T 2 ]  

+wQ3/3! +wT3/3! +wTQ2/2! (2.1) 
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where we have introduced a compact notation QS = Q, T& = T and the relevant 
sums over indices can be deduced from (1.13). We cannot take the limit m + 00 before 
we renormalise the theory, as we generate terms of O(m) in the calculation, which 
give finite relevant contributions when multiplied by the r/m term in the mass. We 
have checked for instance that the l / m  terms from the three-point interactions do 
not give non-zero contributions in the m +CO limit. In fact, our m +CO limit is like 
the n + 0 limit which is taken in order to obtain percolation theory in terms of the 
(n + 1)-state Potts model. 

We can renormalise the two fields using the same renormalisation since they are 
essentially different parts of the same field. We define QR = Z-'/'Q, TR = Z-'/'T, a 
renormalised mass m i  and a renormalised coupling W R ;  then writing X in terms of 
renormalised fields and couplings 

X = +[(v TR)' + (m + ?/ m ) T i  ] + $[ (v QR)' + m i  Q i  ] 

+ ( W R / . L ' / ~ - ~ / ~ ! ) ( T ~  + &  + ~ T R & ) + + ( ~ Q  - 1)mkQk 

-k$(z~- 1)miT; + $ ( z - l ) [ ( v Q ~ ) ~ + ( v T ~ ) ~ ]  

where 

1 - 4 2  
w0 = up 

We shall use the method of minimal subtraction ('t Hooft and Veltman 1972) of 
E poles to calculate our E expansion, since within this scheme the results are indepen- 
dent of the choice of external momenta for the vertex, and we have to calculate only 
the divergent parts of Feynman diagrams. Consider the calculation of the three-point 
vertex function in the Q (spin glass) field 

(2.3) 

, E = 8 - d and p is a momentum scale. 

r R *  (3 0) (4 2 , m i ,  7) = WRCL ~ 1 2 - 1  + ( W 0 z 3 1 2  - W R ) p ~ 1 2 - 1  + A  

where A is the sum of all three-point diagrams. At first order there are two diagrams, 
shown in figure l(a),  which give the following contribution to A :  

(2.4) 

where j p  denotes 5 d $ / ( 2 ~ ) ~  and we have chosen the external momenta to be zero. 
Adding the two parts together and substituting for A in (2.3), 

~ / 2 - 1 +  ( W 0 z 3 / 2  - W R ) p  R' (0, m i ,  7 )  = WRCL 
r(3 0) 

1 1 +convergent terms 

+ O ( W R ) .  (2.5) 
In the minimal subtraction scheme the convergent terms do not contribute. We are 
left with two integrals, the first of which becomes marginal near six dimensions 
and the second near eight dimensions; hence near eight dimensions we need only 
include the contributions from the second integral. I'g3') is finite by construction and 
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- 2  m 2 m  

Figure 1. Feynman diagrams which contribute to ( a )  Tg.o’(q2,  mi, T) and ( b )  
Tg*’’(q2, mi, T) at one loop. Full lines denote propagators of the spin glass (0) field and 
broken lines those of the quadrupole ( T )  field. The numbers shown under each diagram 
are the overall symmetry factors in the limit that n the number of replicas tends to zero. 

therefore the counterterm ( ~ ~ 2 ~ ’ ~  - wR) must exactly cancel the E poles from A ; hence 

(2 .6)  

where we have absorbed a factor of & / ( 2 ~ ) ~  into the coupling constant as usual. We 
can derive the same equation by considering either of the two other three-point 
vertices, and this was done to check the result. 

The wavefunction renormalisation Z can be calculated from either the two-point 
spin glass or quadrupole vertex function. We shall consider the spin glass function: 

(2 .7)  

where Zo is the sum of all Feynman diagrams with two external spin glass legs. In 
order to simplify the calculation of the two-loop diagrams we calculate the derivative 
rKVo’ with respect to q 2 .  Since I‘k2*o) is finite by construction we have the equation 

z - 1 = 8(zQ)/dq2. (2 .8)  

At first order the graphs which contribute to ZQ are shown in figure l ( b ) .  Writing 
down the values of these graphs 

E/2-1 - 
( w 0 ~ ~ ’ ~  - wR)p - (3wi/ .5)7p3E/2-3mi‘  + o(wSR) 

2 rg0)(q2, m i  = 0,7) = q2  + (Z - 114 -&(4’, m i  = 0, 7) 

1 2 1 7 
= -27 2 + -  +convergent terms. 

l p 4 ( p - q )  m l p p 6 ( p - q )  
When we differentiate with respect to q 2  the second term becomes convergent and 
so the only contribution is from the first integral. We find 

(2.10) 

If we substitute this in equation (2 .6)  we find the following equation for wo in terms 

z = 1 + ( 7 / & ) W : p - 2  + O(w4,).  

of wR: 
(2.11)  3 -2 o o = w ~ + ( 3 / 2 & ) ( 3 ~ 7 p  + o ( w i ) .  
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In order to find a fixed point and calculate exponents, we need to choose an effective 
coupling related to our original coupling which has marginal dimensions [ p ] ‘ .  This 
is exactly the same as in the calculation of the E expansion for lattice animals (Lubensky 
and Isaacson 1979). We choose 

(2.12) 2 -2 2 -2 g o = ~ o r F  , gR=wRTF 9 

to define our new coupling. We obtain the equation for go in terms of gR by squaring 
equation (2.11): 

g0 = gR + 3gk/ + o ( g k  ) *  (2.13) 

The p function for the coupling constant gR is given by 

(2.14) agR 
@ k R )  = P-= --€(a In gO/agR)-l 

aP 

so from (2.13) 

b(gR)=-&gR+3gk + o ( g l )  (2.15) 

and the fixed point value p(g*) = 0 is given by 

g* = &/3. (2.16) 

The critical exponent 7 is given as usual by 

and we find 

77 = -&/3. 

(2.17) 

(2.18) 

The calculation of the second exponent involves the evaluation of ZT and ZQ. We 
consider the two-point vertex function or spin glass fields in the massive, zero external 
momentum case: 

(2.19) rg ,0)(q2=o,  mk, T)=mk+mk(ZQ- l ) -EQ(q  2 =O,mR, 2 r).  

At first order 

(2.20) 

The first term is proportional to m k  and is the relevant one at this order. The second 
term is of O ( l / m )  and so vanishes in the m +CO limit. However, when we include 
the counterterm at second order this contribution is multiplied by m and becomes 
relevant. If instead of rgso) we consider rkO*’) and calculate ZT, the m i  parts are 
identical and it is only the O( l /m)  term that differs. The exponent v-’-2+7 is 
therefore the same for both fields. If we define Z,,,, to be the part of ZQ and ZT 
proportional to m i  then 

(2.21) 
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and we find 

(2.22) 

The calculation of second order is just a direct extension of the above. When we add 
together graphs of the same skeleton structure we find the expected cancellations to 
give us terms of O(.r20i) and additional less divergent terms. These less divergent 
terms are of 0 ( 1 )  as at first order, so that there is no problem in the m + CO limit. 
We used the skeleton technique described in Vladimirov (1979) and de Alcantara 
Bonfim et a1 (1981) to simplify the evaluation of the integrals. At second order there 
are independent checks in the theory; we can check first that the vertices are indepen- 
dent of the choice of external momenta as predicted by the minimal subtraction 
scheme. Also we have ’t Hooft (1973) identities which predict that the function P ( g R )  
contains no E poles. Our results to second order are 

-1  
Y -2+q=-2E.  

3. Conclusions 

(2.23) 

We begin by noticing that the E expansions for exponents that we have calculated 
are identical to second order to those of the Q3 model considered by Priest and 
Lubensky (1976). Their model is a tensor trilinear theory with Hamiltonian 

where i, j = 1,2, . . . , p and Qij is a symmetric traceless tensor. We are interested in 
the special case p + CO, but for p > 4 the fixed point of the Q3 theory is unphysical 
near six dimensions for real U .  We therefore consider the case when U is pure imaginary 
and the theory is well defined in the p + CO limit. We find that our exponents to second 
order in an expansion about eight dimensions for the m + CO spin glass are identical 
to the second-order expansion of exponents of the above theory in the p + CO, imaginary 
coupling constant case. It seems likely that the exponents are the same to all orders 
in E and there is a d + d -2  rule similar to that between lattice animals and the 
Yang-Lee edge singularity. This means that we expect the critical behaviour of our 
model near d dimensions to be identical to that of the Q3 model of Priest and Lubensky 
(1976) in d - 2  dimensions. We have therefore calculated the O ( E ~ )  contributions for 
the Q3 model using the general results for exponents from de Alcantara Bonfim et 
a1 (1981). We find 

(3.2) 

(3.3) 

q = -$E -&E’  + [19c3/(2’ x 35)]+ 0 ( e 4 ) ,  
Y -1 - 2 + q  = - 2 ~  + S E  23 2 -  [ 1 0 8 7 ~ ~ / ( 2 ’ ~ 3 * ) ] + 0 ( ~ ~ ) .  

We have not extended the expansion for the spin glass model to the same order, but 
content ourselves with the speculation that by the methods used by Parisi and Sourlas 
(1981) it might be possible to prove the equivalence to all orders. 
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